Q

FERTH SOCIALWARE

Ux02;

Reverse Engineering Workshop
Part 1

$ ¥/, groups socialware

Welcome!
About & Aims
Enjoy!

Perth Socialware 0x02

$ ¥/, groups socialware

RioTinto

Thanks to Rio Tinto for the food and venue!

Perth Socialware 0x02

$ /. cat ./housekeeping

e Ensure induction is completed!

e Don't break stuft
e It you break stutf tell us
e Be respecttul

e Have fun.

$ ¥/, groups socialware

Acknowledgement ot Country

Perth Socialware 0x02

& ~/: whoami

Emu Exploit
 We are a competitive hacking team current rank #1 in
Australia on CTFtime.org

e Founded in 2021, the team consists of many

nighschoolers as well as industry protessionals

8 PROTECT "/
kinetic (@ £ L,

e e
S

Today's Presenters

e Riley (tfoasterpwn) - Captain = 4 4 &=
e Rainier (teddy / TheSavageTeddy) - Vice Captain | ¥ & i |
e Torry (torry2)

e Orlando (g3stion) A4 . il
e Avery (nullableVoidPir) Emu Exploit at Pecan

-
-
==l

CTF 2023

Perth Socialware 0x02

. - i b m = W E . = . E = N =

. a O A N e E E E w |] = =

N L] o E W w W m w e] = o e
B -] . = B far

.] | B | N B B] |] [

L] , L]

- - -

T T YT ETNTFIYTTETN

o

LA | " Pecan CTF 2023

Perth Socialware 0x0] _ -
Perth Socialware 0x02

& ~/: cat content

Timeline:

Presentation [6:00] -> Workshop [6:30] -> End [8:00]

e How does a CPU work? (Fetch Execute Cycle)
e What is memory?

e What is assembly (asm)
e Assembly Programs

e Workshop Filedrop

$ ~/. Reverse Engineering

First of all, what is reverse engineering?

Consider the process ot building a program:
e You figure out what you want to code
e You implement it in code
e You compile the code

e You run the code

What to code —’ Code it _’- Compile it —’ Run it

Information is lost at every stage!

$ ~/. Reverse Engineering

ow can we get back the information that was lost?
This is what reverse engineering is!

What to code —" Code it —" Compile it —" Run it

Information is lost at every stage!

What to code ‘— Code it .‘_ Compile it ‘— Run it

How can we get it back?

Perth Socialware 0x02

$ ~/. Reverse Engineering

Very brietly - types of analysis

Static Analysis

e Look at the compiled code, figure out what it's doing from there

- no running the code

Dynamic Analysis
e Run the code to see what it does

We will only be doing static analysis today, but the knowledge also
translates over to dynamic analysis!

$ ~/. The Fetch-Execute Cycle

The tetch execute outlines what the CPU (Central
Processing Unit) does.

The CPU's job is to carry out given instructions, thus it
tollows a “cycle” where it retrieves an instruction from
memory, executes the instruction, and repeats.

This cycle is known as the “tetch-execute cycle”, or “fetch-

decode-execute cycle”

Perth Socialware 0x02

& ~/: Fetch

Control Unit

Encoded

Instruction

Memory

Registers

Arithmetic Logic Unit

The next instruction is
fetched from memory

& ~/: Decode

Decoded

Control Unit

Instruction

—

Registers

Memory

Arithmetic Logic Unit

The instruction is decoded into basic
operations and memory addresses.

® ~/: Execute

Control Unit Registers

Instruction The information in registers
Parameters tells the ALU (Arithmetic Logic Unit)
to execute an action

Memory Arithmetic Logic Unit

& ~/: Store

Control Unit Registers
Instruction
Result
Memory "_ Arithmetic Logic Unit

The result of that action
Is stored in memory according to the
decoded instruction.

& /' Instructions & Archs

Decoded

Control Unit

Instruction

ﬁ Regisfers

Instruction
Fncoded
_ Parameters
Instruction
Instruction
Result
Memory "_ Arithmetic Logic Unit

Instructions are encoded based on
the type of CPU (architecture)
In a computer.

e ARM
o Thumb
o aarch32
o aarch64

e X86(-64)

e Power ISA

® ~/: Hexadecimal

We normally represent numbers like 123, or 1337 - this is known as base 10
e We use 10 characters: 0123456789
You may know computers work in binary, also known as base 2

e There are 2 characters: 0 and 1

Hexadecimal, or base 16 is simply another way to represent numbers
 We use it to better view values the computer uses, which are closely linked

to powers of two 1337
e Hexadecimal numbers are often pretfixed with Ox 00530
e Characters are 0-9, then A through F
10700111601

These are all the same number

$ ¥/, Registers

e Small stores of data that can be quickly accessible
to instructions
e Specifics vary between architectures
e Some are reserved by convention
o Function calls within the program
o System calls to the OS
e Some are “special” to the processor
o Instruction Pointer (/P) or Program Counter (PC)
o Address registers like Stack Pointer

$ ¥/ Syscalls

e A syscallis aninstruction that communicates with
the operating system to do something

e Parameters for a system call are set up in the CPU’s
registers, then a syscall instruction is called

e Some examples for syscalls include read, write,

open and exit e Website containing syscalls &
calling conventions
e https://syscall.sh

$ ~/. Assembly

Instructions are written in
Assembly Language.

This language, both in syntax
and functionality, varies
between architectures

Additionally, programs on
the same architecture will
vary as syscalls differ
between operating systems

Windows

extern GetStdHandle
extern WriteFile
extern ExitProcess

section .rodata

msg db "Hello World!", éx0d, @x@a
global start

msg_len equ $-msg
stdout_query equ -11
section .text

section .data

stdout dw ©

_start:
bytes written dw ©

mov rax,
section .text mov I“di_,

mov rsi,
mov rdx,

global start

start:
ov rcx, stdout_query
call GetStdHandle
ov [rel stdout], rax

syscall

mov rax,

ov rcx, [rel stdout] mov Pdi_,

syscall

ov rdx, msg

mov r&, msg_len
mov r9, bytes written

push qword @

call WriteEile section .rodata

R msg: db "Hello, world!", 10

call ExitProcess

msglen: equ $ - msg

$ ~/. Syntax

e Line deliminated
e [Instruction] [x], [y]

mov rax rbx

Instruction value/register value/register

& ~/: Common Instructions

e Common Instructions (thereis HUNDREDS)

Data Movement Arithmetic Control Flow
mov add cmp
push sub jmp
pop mul je
xchg div jne
lea shl jle

shr

jge

XOor

jhae

$ ~/: Memory & Addresses

e Suppose the following:

unsigned int myvalue = 1337;

1337

e Compiling the code, this variable is stored at a myvalue
known and tixed location (generally)

e You can access it when writing your code, but
what does it look like to the CPU?

$ ~/: Memory & Addresses

 When moditying that variable:

unsigned int myvalue = 1337;
myvalue = 9001;

9001

¢ In assembly, it would probably look like:

mov myvalue, 9001

myvalue

Perth Socialware 0x02

$ ~/. Memory & Addresses

e CPUs don't “name” variables in memory like you

would in C or P)’ThO”- Ox400FFFC 0x4001000 0x4001004 0x4001008
e Really,
mov myvalue, 9001 9001

Is encoded as something like:
mov [0x4001000], 9001

myvalue

e |n this context, the number
Ox4001000 is an address to our
myvalue variable.

$ ~/. Memory & Addresses

 When a program executes, it stores everything in the
memory:
o variables
o library functions
© its own code

e Within a compiled program, an address can refer to many
things:
o Functions
= Blocks within tunctions
o Other addresses(!)
" e.g. an address which points to an address, which
in turn points to an address...

¥/i pause

Workshop /Networking will now commence!

Filedrop! Find the exercise and challenge files here:
e https://emu.team/tiledrop_0x02

e 3 Exercises +crackme challenge ! (solutions soon)

Download “Binary Ninja”: (cross platform)
e https://binary.ninja/demo/

N/1 Exercise 0x01

0
global _start
section .text

_start:
mov rax, 1l; SYS_write syscall number

mov Tt X, FIX THIS You may want to check out

mov rsi, msg; Set the output buffer to our message

scany; T https://x64.syscall.sh/

mov rax, 60; SYS_exit syscall number
mov rdi, O@; EXIT_SUCCESS exit status
syscall;

section .data
msg db "Hello, World!", Oxa; our message string, plus a 0xa (newline character)
msglen equ $ - msg

mov rax, 1l; SYS_write syscall number
mov rdi, 1; Set FD to stdout
mov rsi, msg; Set the output buffer to our

mov rdx, msglen; Set rdx to msglen
syscall;

mov rax, 60; SYS_exit syscall number
mov rdi, @; EXIT_SUCCESS exit status
syscall;

fd (file descriptor)

section .data name

msg db "Hello, World!", Oxa; our message string, plus a Oxa (newline character) number
msglen equ $ - msg

ccocmooooo
]

SYSCALL NAME | references | | ARGO (rdi) | ARGl (rsi) ARG2 (rdx) | 0 stdin

read man/ cs/ unsigned int fd char xbuf size_t count
write man/ cs/ unsigned int fd const char xbuf size_t count] stdout

i i
e
]]

| ; . const char : i
open ; man/ cs/ ; : Filename ; int flags . umode_t mode

2 stderr

close man/ cs/ unsigned int fd

(from https://x64.syscall.sh/)

we set output to stdout

mov rax, 1l; SYS_write syscall numbexr
mov rdi, 1; Set FD to stdout
mov rsi, msg; Set the output buffer to our

mov rdx, msglen; Set rdx to msglen
syscall;

mov rax, 60; SYS_exit syscall number
mov rdi, @; EXIT_SUCCESS exit status
syscall;

fd (file descriptor) Came

section .data

msg db "Hello, World!", Oxa; our message string, plus a Oxa (newline character) number
msglen equ $ - msg

ccocmooooo
]

| SYSCALL NAME | references | | ARGO (rdi) | ARGl (rsi) ARG2 (rdx) | 0 stdin

read E man/ cs/ E E unsigned int fd E char xbuf E size_t count
write E man/ cs/ E E unsigned int Fdé const char xbuf E size_t count E] stdout

i i
e
]]

| ; . const char : i
open ; man/ cs/ ; : Filename ; int flags . umode_t mode

2 stderr

close E man/ cs/ E E unsigned int fd

(from https://x64.syscall.sh/)

we set output to stdout

mov r
mov r
-

axX

ax, 1; SYS_write syscall_ numbes
di, 1; Set FD to stdout .

mov rsi, msg; Set the output buffer to our 'F | 'I'h
mov rdx, msg{en; Set rdx to msglen We SpeCI y Our message eng
syscall;

mov rax, 60; SYS_exit syscall number
mov rdi, @; EXIT_SUCCESS exit status
syscall;

fd (file descriptor)

section .data name

msg db "Hello, World!", Oxa; our message string, plus a Oxa (newline character) number
msglen equ $ - msg

SYSCALL NAME | references | | ARGO (rdi) | ARGl (rsi) ARG2 (rdx) | 0 stdin

read man/ cs/ unsigned int fd char xbuf size_t count
write man/ cs/ unsigned int fd const char xbuf size_t count] stdout

i i
e
]]

| ; . const char : i
open ; man/ cs/ ; ; Filename ; int flags . umode_t mode

2 stderr

close man/ cs/ unsigned int fd

(from https://x64.syscall.sh/)

N/: Exercise 0x02

global _start
section .text

_start:
mov rbx, 0; set the counter to 0 to start
slLoopis mark this position with "loop so we can jump to it
; lncrement the number we are printing.... FIX ME
mov rsi, rbx; move i1t into rsi to be the buffer we print
add rsi, 48; convert number from decimal to it's ascii code
push rsi; put it on the stack so we can get the address
mov rsi, rsp; get the address of the first item of the stack, so we can print it
mov rdi, 1; set fd to stdout
mov rdx, 1; we are writing one byte
mov rax, 1l; set syscall number to SYS_write
syscall;

mov rax, 1l; set syscall number to SYS_write

mov rdi, 1; set fd to stdout

mov rsi, Oxa; newline character

push rsi; put 1t on the stack so we can get the address

mov rsi, rsp; get the address of the first item of the stack, so we can print it
mov rdx, 1; we are writing one byte

syscall;

cmp rbx, 8; compare to the max number we will print, minus 1
jle XYZ; 1if less than, jump back to ... FIX THIS

mov rax, 60; set syscall number to SYS_exit
mov rdi, 0; set code to EXIT_SUCCESS
; There should be an instruction here... FIX THIS

Perth Socialware 0x02

N/: Exercise 0x02 - Solution

global _start
section .text

_start:
mov rbx, 0; set the counter to 0 to start
s Loop':: mark this position with "loop so we can jump to it
inc rbx; increment the number we are printing.... FIX ME
mov rsi, rbx; move i1t into rsi to be the buffer we print
add rsi, 48; convert number from decimal to i1t's ascii code
push rsi; put 1t on the stack so we can get the address
mov rsi, rsp; get the address of the first item of the stack, so we can print it
mov rdi, 1; set fd to stdout
mov rdx, 1l; we are writing one byte
mov rax, 1l; set syscall number to SYS_write

syscall;

mov rax, 1l; set syscall number to SYS_write

mov rdi, 1; set fd to stdout

mov rsi, Oxa; newline character

push rsi; put it on the stack so we can get the address

mov rsi, rsp; get the address of the first item of the stack, so we can print it
mov rdx, 1l; we are writing one byte

syscall;

cmp rbx, 8; compare to the max number we will print, minus 1
jle .loop; 1if less than, jump back to ... FIX THIS

mov rax, 60; set syscall number to SYS_exit
mov rdi, 0; set code to EXIT_SUCCESS
syscall; There should be an instruction here... FIX THIS

Perth Socialware 0x02

N/: Exercise 0x02 - Solution

global _start

we need to increment o ()

_start:
mov rbx, 0; set the counter to 0 to start
s Loop':: mark this position with "loop so we can jump to it
inc rbx; increment the number we are printing.... FIX ME
mov rsi, rbx; move i1t into rsi to be the buffer we print
add rsi, 48; convert number from decimal to i1t's ascii code
push rsi; put 1t on the stack so we can get the address
mov rsi, rsp; get the address of the first item of the stack, so we can print it
mov rdi, 1; set fd to stdout
mov rdx, 1l; we are writing one byte
mov rax, 1l; set syscall number to SYS_write

syscall;

mov rax, 1l; set syscall number to SYS_write

mov rdi, 1; set fd to stdout

mov rsi, Oxa; newline character

push rsi; put it on the stack so we can get the address

mov rsi, rsp; get the address of the first item of the stack, so we can print it
mov rdx, 1l; we are writing one byte

syscall;

cmp rbx, 8; compare to the max number we will print, minus 1
jle .loop; 1if less than, jump back to ... FIX THIS

mov rax, 60; set syscall number to SYS_exit
mov rdi, 0; set code to EXIT_SUCCESS
syscall; There should be an instruction here... FIX THIS

Perth Socialware 0x02

N/: Exercise 0x02 - Solution

global _start

we need to increment o ()

start:

mov rbx, 0; set the counter to 0 to start :

2 LOOpS; r:1ark this position with "loop so we can jump to it Slnce The leue Of
inc rbx; increment the number we are printing.... FIX ME

mov rsi, rbx; move i1t into rsi to be the buffer we print . .

add rsi, 48; convert number from decimal to i1t's ascii code Ond IS prln-red
push rsi; put 1t on the stack so we can get the address

mov rsi, rsp; get the address of the first item of the stack, so we can print it

mov rdi, 1; set fd to stdout

mov rdx, 1l; we are writing one byte

mov rax, 1l; set syscall number to SYS_write

syscall;

mov rax, 1l; set syscall number to SYS_write

mov rdi, 1; set fd to stdout

mov rsi, Oxa; newline character

push rsi; put it on the stack so we can get the address

mov rsi, rsp; get the address of the first item of the stack, so we can print it
mov rdx, 1l; we are writing one byte

syscall;

cmp rbx, 8; compare to the max number we will print, minus 1
jle .loop; 1if less than, jump back to ... FIX THIS

mov rax, 60; set syscall number to SYS_exit
mov rdi, 0; set code to EXIT_SUCCESS
syscall; There should be an instruction here... FIX THIS

Perth Socialware 0x02

N/: Exercise 0x02 - Solution

global _start

we need to increment o ()

start:

mov rbx, 0; set the counter to 0 to start :

2 LOOpS; r:1ark this position with "loop so we can jump to it Slnce The leue Of
inc rbx; increment the number we are printing.... FIX ME

mov rsi, rbx; move i1t into rsi to be the buffer we print . .

add rsi, 48; convert number from decimal to i1t's ascii code Ond IS prln-red
push rsi; put 1t on the stack so we can get the address

mov rsi, rsp; get the address of the first item of the stack, so we can print it

mov rdi, 1; set fd to stdout

mov rdx, 1l; we are writing one byte

mov rax, 1l; set syscall number to SYS_write

syscall;

mov rax, 1l; set syscall number to SYS_write
mov rdi, 1; set fd to stdout

- : 11 /4 .
mov rsi, Oxa; newline character dd .|. b k
push rsi; put it on the stack so we can get the address O J/ O JUI I |p OC

mov rsi, rsp; get the address of the first item of the stack, so we can print it

mov rdx, 1l; we are writing one byte
syscall; 1-0 The |Obe‘

cmp rbx, 8; compare to the max number we will print, minus 1
jle .loop; 1if less than, jump back to ... FIX THIS

mov rax, 60; set syscall number to SYS_exit
mov rdi, 0; set code to EXIT_SUCCESS
syscall; There should be an instruction here... FIX THIS

Perth Socialware 0x02

N/: Exercise 0x02 - Solution

global _start

we need to increment o ()

start:

mov rbx, 0; set the counter to 0 to start :

2 LOOpS; r:1ark this position with "loop so we can jump to it Slnce The leue Of
inc rbx; increment the number we are printing.... FIX ME

mov rsi, rbx; move i1t into rsi to be the buffer we print . .

add rsi, 48; convert number from decimal to i1t's ascii code Ond IS prln-red
push rsi; put 1t on the stack so we can get the address

mov rsi, rsp; get the address of the first item of the stack, so we can print it

mov rdi, 1; set fd to stdout

mov rdx, 1l; we are writing one byte

mov rax, 1l; set syscall number to SYS_write

syscall;

mov rax, 1l; set syscall number to SYS_write
mov rdi, 1; set fd to stdout

: ; 11 /4 .
mov rsi, Oxa; newline character dd .|. b k
push rsi; put i1t on the stack so we can get the address O J/ O JUI I |p OC

J
mov rsi, rsp; get the address of the first item of the stack, so we can print it

mov rdx, 1l; we are writing one byte
syscall; 1-0 The |Obe‘

cmp rbx, 8; compare to the max number we will print, minus 1
jle .loop; 1if less than, jump back to ... FIX THIS

mov rax, 60; set syscall number to SYS_exit Gdd inS-l-rUC-l-ion -I-O

mov rdi, 0; set code to EXIT_SUCCESS
syscall; There should be an instruction here... FIX THIS

actually initiate the exit
Perth Socialware 0x02

b~/

Exercise Ox03

Exercise 3 Instructions:
Fix the file
It should print every even number (between 1 and 9)
Compille the program by running make

If something screws up, run make clean to start again from the source file

Take a look at the previous exercises

They might be helpful for this one...

Perth Socialware 0x02

N/: Exercise 0x03 - Solution

global _start
section .text

_start:
mov rbx, 0; set the counter to 0 to start
.loop:; mark this position with ".loop so we can jump to it
add rbx, 2; increment rbx by 2
mov rsi, rbx; move it into rsi to be the buffer we print
add rsi, 48; convert number from decimal to it's asciil code
push rsi; put 1t on the stack so we can get the address
mov rsi, rsp; get the address of the first item of the stack, so we can print it
mov rdi, 1; set fd to stdout
mov rdx, 1; we are writing one byte
mov rax, 1; set syscall number to SYS_write
syscall;

mov rax, 1; set syscall number to SYS_write

mov rdi, 1; set fd to stdout

mov rsi, Oxa; newline character

push rsi; put i1t on the stack so we can get the address

mov rsi, rsp; get the address of the first item of the stack, so we can print it
mov rdx, 1; we are writing one byte

syscall;

cmp rbx, 7; compare to the max number we will print, minus 1
jle .loop; if less than, jump back to ".loop"

mov rax, 60; set syscall number to SYS_exit
mov rdi, 0; set code to EXIT_SUCCESS
syscall;

Perth Socialware 0x02

N/: Exercise 0x03 - Solution

global _start

section .text We incremen-'- by 2 (

_start:
mov rbx, 0; set the counter to 0 to start
.loop:; mark this position with ~ 125y so we can jump to it
add rbx, 2; increment rbx by 2
mov rsi, rbx; move it into rsi to be the buffer we print
add rsi, 48; convert number from decimal to it's asciil code
push rsi; put 1t on the stack so we can get the address
mov rsi, rsp; get the address of the first item of the stack, so we can print it
mov rdi, 1; set fd to stdout
mov rdx, 1; we are writing one byte
mov rax, 1; set syscall number to SYS_write
syscall;

mov rax, 1; set syscall number to SYS_write

mov rdi, 1; set fd to stdout

mov rsi, Oxa; newline character

push rsi; put i1t on the stack so we can get the address

mov rsi, rsp; get the address of the first item of the stack, so we can print it
mov rdx, 1; we are writing one byte

syscall;

cmp rbx, 7; compare to the max number we will print, minus 1
jle .loop; if less than, jump back to ".loop"

mov rax, 60; set syscall number to SYS_exit
mov rdi, 0; set code to EXIT_SUCCESS
syscall;

Perth Socialware 0x02

N/: Exercise 0x03 - Solution

global _start

section .text We incremen-'- by 2 (

_start:
mov rbx, 0; set the counter to 0 to start

.loop:; mark this position with ' l2gy so we can jump to it 1 1 d -|- d . .I. d
add rbx, 2; increment rbx by 2 | IS Cople O On prln e

mov rsi, rbx; move it into rsi to be the buffer we print

add rsi, 48; convert number from decimal to it's asciil code

push rsi; put 1t on the stack so we can get the address

mov rsi, rsp; get the address of the first item of the stack, so we can print it
mov rdi, 1; set fd to stdout

mov rdx, 1; we are writing one byte

mov rax, 1; set syscall number to SYS_write

syscall;

mov rax, 1; set syscall number to SYS_write

mov rdi, 1; set fd to stdout

mov rsi, Oxa; newline character

push rsi; put i1t on the stack so we can get the address

mov rsi, rsp; get the address of the first item of the stack, so we can print it
mov rdx, 1; we are writing one byte

syscall;

cmp rbx, 7; compare to the max number we will print, minus 1
jle .loop; if less than, jump back to ".loop"

mov rax, 60; set syscall number to SYS_exit
mov rdi, 0; set code to EXIT_SUCCESS
syscall;

Perth Socialware 0x02

N/: Exercise 0x03 - Solution

global _start

section .text We incremen-'- by 2 (

_start:
mov rbx, 0; set the counter to 0 to start

.loop:; mark this position with ' l2gy so we can jump to it 1 1 d -|- d . .I. d
add rbx, 2; increment rbx by 2 | IS Cople O On prln e

mov rsi, rbx; move it into rsi to be the buffer we print

add rsi, 48; convert number from decimal to it's asciil code

push rsi; put 1t on the stack so we can get the address

mov rsi, rsp; get the address of the first item of the stack, so we can print
mov rdi, 1; set fd to stdout

mov rdx, 1; we are writing one byte

mov rax, 1; set syscall number to SYS_write

syscall;

mov rax, 1; set syscall number to SYS_write . <<:: .
mov rdi, 1; set fd to stdout 'F 7 'I'h |

mov rsi, Oxa; newline character I \ en We Oop Ogaln
push rsi; put i1t on the stack so we can get the address

mov rsi, rsp; get the address of the first item of the stack, so we can print it

mov rdx, 1; we are writing one byte

syscall;

cmp rbx, 7; compare to the max number we will print, minus 1
jle .loop; if less than, jump back to ".loop"

mov rax, 60; set syscall number to SYS_exit
mov rdi, 0; set code to EXIT_SUCCESS
syscall;

Perth Socialware 0x02

N/: Exercise 0x03 - Solution

global _start

section .text We incremen-'- by 2 (

_start:
mov rbx, 0; set the counter to 0 to start

.loop:; mark this position with ' l2gy so we can jump to it 1 1 d -|- d . .I. d
add rbx, 2; increment rbx by 2 | IS Cople O On prln e

mov rsi, rbx; move it into rsi to be the buffer we print

add rsi, 48; convert number from decimal to it's asciil code

push rsi; put 1t on the stack so we can get the address

mov rsi, rsp; get the address of the first item of the stack, so we can print it
mov rdi, 1; set fd to stdout

mov rdx, 1; we are writing one byte

mov rax, 1; set syscall number to SYS_write

syscall;

mov rax, 1; set syscall number to SYS_write . <<:: .
mov rdi, 1; set fd to stdout 'F 7 'I'h |

mov rsi, Oxa; newline character I \ en We Oop Ogaln
push rsi; put i1t on the stack so we can get the address

mov rsi, rsp; get the address of the first item of the stack, so we can print it

mov rdx, 1; we are writing one byte

syscall;

cmp rbx, 7; compare to the max number we will print, minus 1

jle .loop; if less than, jump back to ".loop" O-l-herwise We eXi-I-

mov rax, 60; set syscall number to SYS_exit
mov rdi, 0; set code to EXIT SIICCESS
syscall;

Perth Socialware 0x02

& /1 "crackme” Challenge

e Blood Prize
e Hak5 Rubber Ducky

e Exercise 3 (Best Solution)
e ESP32 + Accessories

* More to win! We're looking for those taking on the exercises.

Perth Socialware 0x02

$ ~/. gquestions

Questions!

Perth Socialware 0x02

v/ shutdown

Thank you!

Perth Socialware 0x02

