
PERTH SOCIALWAREPERTH SOCIALWARE
0x02:0x02:

Reverse Engineering WorkshopReverse Engineering Workshop
Part 1Part 1

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: groups "socialware"$ ~/: groups "socialware"

Welcome!
About & Aims

Enjoy!

Perth Socialware 0x02Perth Socialware 0x02

 Thanks to Rio Tinto for the food and venue!

$ ~/: groups "socialware"$ ~/: groups "socialware"

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: cat ./housekeeping$ ~/: cat ./housekeeping

Ensure induction is completed!

Don’t break stuff
If you break stuff tell us
Be respectful
Have fun.

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: groups "socialware"$ ~/: groups "socialware"

Acknowledgement of Country

We are a competitive hacking team current rank #1 in
Australia on CTFtime.org
Founded in 2021, the team consists of many
highschoolers as well as industry professionals

Riley (toasterpwn) - Captain
Rainier (teddy / TheSavageTeddy) - Vice Captain
Torry (torry2)
Orlando (q3st1on)
Avery (nullableVoidPtr)

Emu Exploit

Today’s Presenters

$ ~/: whoami$ ~/: whoami

Perth Socialware 0x02Perth Socialware 0x02

Emu Exploit at Pecan CTF 2023

$ ~/: whoami$ ~/: whoami

Perth Socialware 0x02Perth Socialware 0x02

p4CTF in Katowice, Poland

Pecan CTF 2023
Perth Socialware 0x01

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: cat content$ ~/: cat content

How does a CPU work? (Fetch Execute Cycle)
What is memory?
What is assembly (asm)
Assembly Programs

Workshop Filedrop

Timeline:
Presentation [6:00] -> Workshop [6:30] -> End [8:00]

You figure out what you want to code
You implement it in code
You compile the code
You run the code

First of all, what is reverse engineering?

Consider the process of building a program:

What to code Code it Compile it Run it

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Reverse Engineering$ ~/: Reverse Engineering

Information is lost at every stage!

How can we get back the information that was lost?
This is what reverse engineering is!

What to code Code it Compile it Run it

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Reverse Engineering$ ~/: Reverse Engineering

Information is lost at every stage!

What to code Code it Compile it Run it

How can we get it back?

Look at the compiled code, figure out what it’s doing from there
- no running the code

Run the code to see what it does

Very briefly - types of analysis

Static Analysis

Dynamic Analysis

We will only be doing static analysis today, but the knowledge also
translates over to dynamic analysis!

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Reverse Engineering$ ~/: Reverse Engineering

The fetch execute outlines what the CPU (Central
Processing Unit) does.

The CPU’s job is to carry out given instructions, thus it
follows a “cycle” where it retrieves an instruction from
memory, executes the instruction, and repeats.

This cycle is known as the “fetch-execute cycle”, or “fetch-
decode-execute cycle”

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: The Fetch-Execute Cycle$ ~/: The Fetch-Execute Cycle

CPU

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Fetch$ ~/: Fetch

Control Unit Registers

Arithmetic Logic UnitMemory

Encoded
Instruction

The next instruction is
fetched from memory

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Decode$ ~/: Decode

Control Unit Registers

Arithmetic Logic UnitMemory

Decoded
Instruction

The instruction is decoded into basic
operations and memory addresses.

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Execute$ ~/: Execute

Control Unit Registers

Arithmetic Logic UnitMemory

Instruction
Parameters

The information in registers
tells the ALU (Arithmetic Logic Unit)

to execute an action

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Store$ ~/: Store

Control Unit Registers

Arithmetic Logic UnitMemory

Instruction
Result

The result of that action
is stored in memory according to the

decoded instruction.

Control Unit Registers

Arithmetic Logic UnitMemory

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Instructions & Archs$ ~/: Instructions & Archs

Instruction
Result

Instructions are encoded based on
the type of CPU (architecture)

in a computer.

Encoded
Instruction

Decoded
Instruction

Instruction
Parameters ARM

Thumb
aarch32
aarch64

x86(-64)
Power ISA

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Hexadecimal$ ~/: Hexadecimal

We use 10 characters: 0123456789

There are 2 characters: 0 and 1

We use it to better view values the computer uses, which are closely linked
to powers of two
Hexadecimal numbers are often prefixed with 0x
Characters are 0-9, then A through F

We normally represent numbers like 123, or 1337 - this is known as base 10

You may know computers work in binary, also known as base 2

Hexadecimal, or base 16 is simply another way to represent numbers

1337
0x0539

10100111001
These are all the same number

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Registers$ ~/: Registers
Small stores of data that can be quickly accessible
to instructions
Specifics vary between architectures
Some are reserved by convention

Function calls within the program
System calls to the OS

Some are “special” to the processor
Instruction Pointer (IP) or Program Counter (PC)
Address registers like Stack Pointer

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Syscalls$ ~/: Syscalls
A syscall is an instruction that communicates with
the operating system to do something

Parameters for a system call are set up in the CPU’s
registers, then a syscall instruction is called

Some examples for syscalls include read, write,
open and exit Website containing syscalls &

calling conventions
https://syscall.sh

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Assembly$ ~/: Assembly
Instructions are written in

Assembly Language.

This language, both in syntax
and functionality, varies
between architectures

Linux

Windows

Additionally, programs on
the same architecture will

vary as syscalls differ
between operating systems

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Syntax$ ~/: Syntax
Line deliminated
[Instruction] [x], [y]

mov rax rbx

Instruction value/register value/register

Data Movement Arithmetic Control Flow

mov add cmp

push sub jmp

pop mul je

xchg div jne

lea shl jle

shr jge

xor jnae

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Common Instructions$ ~/: Common Instructions
Common Instructions (there is HUNDREDS)

... 1337

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Memory & Addresses$ ~/: Memory & Addresses
Suppose the following:

Compiling the code, this variable is stored at a
known and fixed location (generally)
You can access it when writing your code, but
what does it look like to the CPU?

unsigned int myvalue = 1337;

myvalue

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Memory & Addresses$ ~/: Memory & Addresses
When modifying that variable:

In assembly, it would probably look like:

unsigned int myvalue = 1337;
myvalue = 9001;

mov myvalue, 9001

... 9001

myvalue

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Memory & Addresses$ ~/: Memory & Addresses

In this context, the number
0x4001000 is an address to our
myvalue variable.

CPUs don’t “name” variables in memory like you
would in C or Python.
Really,

mov myvalue, 9001
is encoded as something like:
mov [0x4001000], 9001

... 9001

myvalue

0x4001000 0x40010080x40010040x400FFFC

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Memory & Addresses$ ~/: Memory & Addresses
When a program executes, it stores everything in the
memory:

variables
library functions
its own code

Within a compiled program, an address can refer to many
things:

Functions
Blocks within functions

Other addresses(!)
e.g. an address which points to an address, which
in turn points to an address...

Perth Socialware 0x02Perth Socialware 0x02

~/: pause~/: pause

https://emu.team/filedrop_0x02
3 Exercises +crackme challenge ! (solutions soon)

https://binary.ninja/demo/

Workshop/Networking will now commence!

Filedrop! Find the exercise and challenge files here:

Download “Binary Ninja”: (cross platform)

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Exercise 0x01$ ~/: Exercise 0x01

You may want to check out
https://x64.syscall.sh/

fd (file descriptor)
number

name

0 stdin

1 stdout

2 stderr

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Exercise 0x01 - Solution$ ~/: Exercise 0x01 - Solution

(from https://x64.syscall.sh/)

fd (file descriptor)
number

name

0 stdin

1 stdout

2 stderr

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Exercise 0x01 - Solution$ ~/: Exercise 0x01 - Solution

(from https://x64.syscall.sh/)

we set output to stdout (mov rdi, 1)

fd (file descriptor)
number

name

0 stdin

1 stdout

2 stderr

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Exercise 0x01 - Solution$ ~/: Exercise 0x01 - Solution

(from https://x64.syscall.sh/)

we set output to stdout (mov rdi, 1)

we specify our message length

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Exercise 0x02$ ~/: Exercise 0x02

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Exercise 0x02 - Solution$ ~/: Exercise 0x02 - Solution

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Exercise 0x02 - Solution$ ~/: Exercise 0x02 - Solution

we need to increment rbx (inc rbx)

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Exercise 0x02 - Solution$ ~/: Exercise 0x02 - Solution

we need to increment rbx (inc rbx)
since the value of rsi = rbx
and rsi is printed

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Exercise 0x02 - Solution$ ~/: Exercise 0x02 - Solution

add “jle .loop”, to jump back
to the .loop label

we need to increment rbx (inc rbx)
since the value of rsi = rbx
and rsi is printed

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Exercise 0x02 - Solution$ ~/: Exercise 0x02 - Solution

add “jle .loop”, to jump back
to the .loop label

we need to increment rbx (inc rbx)
since the value of rsi = rbx
and rsi is printed

add syscall instruction to
actually initiate the exit

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Exercise 0x03$ ~/: Exercise 0x03

Take a look at the previous exercises

They might be helpful for this one...

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Exercise 0x03 - Solution$ ~/: Exercise 0x03 - Solution

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Exercise 0x03 - Solution$ ~/: Exercise 0x03 - Solution

We increment rbx by 2 (add rbx, 2)

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Exercise 0x03 - Solution$ ~/: Exercise 0x03 - Solution

We increment rbx by 2 (add rbx, 2)

rbx is copied to rsi and printed

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Exercise 0x03 - Solution$ ~/: Exercise 0x03 - Solution

We increment rbx by 2 (add rbx, 2)

rbx is copied to rsi and printed

if rbx ≤ 7 then we loop again

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: Exercise 0x03 - Solution$ ~/: Exercise 0x03 - Solution

We increment rbx by 2 (add rbx, 2)

rbx is copied to rsi and printed

if rbx ≤ 7 then we loop again

Otherwise we exit

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: “crackme” Challenge$ ~/: “crackme” Challenge
Blood Prize
Hak5 Rubber Ducky

Exercise 3 (Best Solution)
ESP32 + Accessories

More to win! We’re looking for those taking on the exercises.

Perth Socialware 0x02Perth Socialware 0x02

$ ~/: questions$ ~/: questions

Questions!

Perth Socialware 0x02Perth Socialware 0x02

~/: shutdown~/: shutdown
Thank you!

