
Causing Funky Things in
your NodeJS Servers

Housekeeping

Thank You PwC for Sponsoring

● A huge thank you to PwC for sponsoring
Socialware this month!

● Socialware relies on the generous
contribution of our volunteers and
companies like PwC to run.

● All for sharing knowledge about
Cybersecurity with others.

● A word from our sponsor.

Disclaimer

● This is a highly informal presentation.

● It does not reflect how I work professionally and this is
just for fun.

● Statements such as “lol [object Object]” are a joke and
me being silly.

○ There are pros and cons for choosing any language.

○ My aim in this workshop is to highlight gotchyas I have seen in
NodeJS applications for developers and testers to be aware about.

About Me

● Passionate learning about
offensive security

● Involved in the cyber security
industry since 2019

● Currently working as a security
consultant at elttam

○ I primarily do white-box
assessments of web applications

● I have a crippling addiction
hacking things

ghostccamm on Twitter X (such a dumb
name) or Discord

What is NodeJS?
● It is a JavaScript runtime specifically designed for building network

applications.

● Normally JavaScript is executed in browsers. However, NodeJS allows
developers to use JavaScript for server-side code as well.
○ In this workshop I will interchange between NodeJS and JavaScript
○ There are other JavaScript based languages that I will talk about later

● Great for building web APIs very quickly and easily using a variety of
established frameworks:
○ Express
○ Koa
○ Nest
○ A lot more

Pros and Cons for Using NodeJS

Reasons Why Developers Choose
NodeJS for Backend Servers

Pros and Cons for Using NodeJS

Reasons Why Developers Choose
NodeJS for Backend Servers

● Simple development
○ JavaScript is an easy language

to pick up and start developing

Pros and Cons for Using NodeJS

Reasons Why Developers Choose
NodeJS for Backend Servers

● Simple development
○ JavaScript is an easy language

to pick up and start developing

● Homogenous skill requirements
○ Frontend developers could work

on the backend.

Pros and Cons for Using NodeJS

Reasons Why Developers Choose
NodeJS for Backend Servers

● Simple development
○ JavaScript is an easy language

to pick up and start developing

● Homogenous skill requirements
○ Frontend developers could work

on the backend.

● It is “better” than PHP
regarding security.

Pros and Cons for Using NodeJS

Reasons Why Developers Choose
NodeJS for Backend Servers

● Simple development
○ JavaScript is an easy language

to pick up and start developing

● Homogenous skill requirements
○ Frontend developers could work

on the backend.

● It is “better” than PHP
regarding security.

My Concerns Regarding Security for
NodeJS Backend Servers

Pros and Cons for Using NodeJS

Reasons Why Developers Choose
NodeJS for Backend Servers

● Simple development
○ JavaScript is an easy language

to pick up and start developing

● Homogenous skill requirements
○ Frontend developers could work

on the backend.

● It is “better” than PHP
regarding security.

My Concerns Regarding Security for
NodeJS Backend Servers

● Simple development
○ Simplicity is not always a good

thing and can lead to vulns

Pros and Cons for Using NodeJS

Reasons Why Developers Choose
NodeJS for Backend Servers

● Simple development
○ JavaScript is an easy language

to pick up and start developing

● Homogenous skill requirements
○ Frontend developers could work

on the backend.

● It is “better” than PHP
regarding security.

My Concerns Regarding Security for
NodeJS Backend Servers

● Simple development
○ Simplicity is not always a good

thing and can lead to vulns

● Homogenous skill requirements
○ Frontend devs don’t have

experience with backend security

Pros and Cons for Using NodeJS

Reasons Why Developers Choose
NodeJS for Backend Servers

● Simple development
○ JavaScript is an easy language

to pick up and start developing

● Homogenous skill requirements
○ Frontend developers could work

on the backend.

● It is “better” than PHP
regarding security.

My Concerns Regarding Security for
NodeJS Backend Servers

● Simple development
○ Simplicity is not always a good

thing and can lead to vulns

● Homogenous skill requirements
○ Frontend devs don’t have

experience with backend security

● JavaScript is the new PHP for
Millenials and Zoomers

○ jk

Pros and Cons for Using NodeJS

Reasons Why Developers Choose
NodeJS for Backend Servers

● Simple development
○ JavaScript is an easy language

to pick up and start developing

● Homogenous skill requirements
○ Frontend developers could work

on the backend.

● It is “better” than PHP
regarding security.

My Concerns Regarding Security for
NodeJS Backend Servers

● Simple development
○ Simplicity is not always a good

thing and can lead to vulns

● Homogenous skill requirements
○ Frontend devs don’t have

experience with backend security

● JavaScript is the new PHP for
Millenials and Zoomers

○ jk

This is a joke

Structure of this Workshop

1. Try to explain what are Objects in JavaScript.

2. Demonstrate prototype chain vulnerabilities
a. Also demonstrate popular NodeJS libraries that allow user inputs to be

manipulated.

3. A brief explanation about Object manipulation.

4. CTF time :)

Objects in JavaScript

Typed vs Untyped Programming Languages

● Typed languages require the
type of a variable to be known
when it is declared.
○ Mitigates against issues with

confusing types.
○ Does take longer to develop.
○ Example programming languages:

■ C
■ Java
■ Rust
■ TypeScript*
■ etc

● Untyped languages do not
require defining the type of a
variable when it is declared.
○ The runtime will determine the

type of the variable based on
the context.

○ Makes development easier, but
can introduce weird scenarios.

○ Example programming languages:
■ JavaScript
■ PHP
■ Python
■ etc

The weirdness of JavaScript typing

● JavaScript has 7 primitive
datatypes:
○ string
○ number
○ boolean
○ undefined
○ symbol
○ null

● Every other type in JavaScript
is just an Object

What are Objects in JavaScript?

● An Object is a collection of
properties.
○ Can be used to store:

■ Primitive data types
■ Other Objects
■ Functions
■ Anything really

● Properties are then identified
using key values.

Example declaring an Object

Console output

Object Inheritance and the Prototype Chain

● In programming, inheritance is the passing down of characteristics from a
parent to a child.
○ Can reuse code and build upon features
○ This definition was stolen from Mozilla’s documentation

● How JavaScript does this is by linking Objects in a chain.
○ The parent Object is stored in a special property named __proto__.
○ The chain ends where an Object has null as its prototype.

● This is known as the Prototype Chain

Object Inheritance and the Prototype Chain

● In programming, inheritance is the passing down of characteristics from a
parent to a child.
○ Can reuse code and build upon features
○ This definition was stolen from Mozilla’s documentation

● How JavaScript does this is by linking Objects in a chain.
○ The parent Object is stored in a special property named __proto__.
○ The chain ends where an Object has null as its prototype.

● This is known as the Prototype Chain

Most people in the audience atm

Example of the Prototype Chain

● The example code on the right
declares two JavaScript classes named
Parent and Child
○ The Child class inherits from the

Parent class
○ The Child class also adds in some

extra functionality

● Oh btw, in JavaScript classes and
instances of classes are still
Objects.
○ They were added because developers

were getting confused about the
prototype chain

Example of the Prototype Chain

● What happens when we try to retrieve
an attribute from the kid?

● For an example:

Example of the Prototype Chain

● We just grab the value stored in the Child
object since it is set there when we called
super() in the constructor.

● In this example it will return with “Jeff”

The prototype chain for the kid variable

Example of the Prototype Chain

● The above code would execute the function that
is stored in the Child Prototype.
○ Doesn’t execute the saySomething in the Parent

Prototype since the Child Prototype has it already
defined higher in the chain.

The prototype chain for the kid variable

Example of the Prototype Chain

● The above code would execute the function that
is stored in the Parent Prototype.

The prototype chain for the kid variable

Example of the Prototype Chain

● The iDontExist property does not exist in the
prototype chain.

● When the null prototype is reached, NodeJS will
just return undefined.

The prototype chain for the kid variable

Extra Things About the Prototype Chain
● You can access the Prototype of an

object in a number of ways.
○ someVar.__proto__
○ someVar.constructor.prototype
○ someVar[“__proto__”]
○ someVar[“constructor”][“prototype”]

● If you want to see the Prototype
Chain yourself, use util.inspect as
shown in the code to the right.
○ Or just use a debugger.

● Even though string and BigInt are
primitive types, they are also
Objects

This is called foreshadowing

Why is the prototype chain important for security?

Why is the prototype chain important for security?

Prototype Chain Vulnerabilities

Prototype Pollution Vulnerabilities

● Prototype Pollution is when you modify a global prototype
Object that would set a property for all other objects.
○ For an example you could do the following:

■ Make everyone an administrator user
■ DoS the server
■ Set application settings

● Generally it is caused when two Objects are merged
unsafely.

Example Prototype Pollution Vulnerable Code

● Code on the right
recursively merges the
properties of a source
Object to a target Object.

● So what happens if we try
to merge the following
sourceObject?

Example Prototype Pollution Vulnerable Code

1. Both the target and source
have the __proto__
property.
a. Calls the merge function

again merging the __proto__

Example Prototype Pollution Vulnerable Code

1. Both the target and source
have the __proto__
property.
a. Calls the merge function

again merging the __proto__

2. The polluted property is
then set on the __proto__
object 👀
a. We have just polluted the

Object prototype for all
other Objects…

Example Prototype Pollution Vulnerable Code

● Below you can see that the
property got polluted in
the Object prototype.

Example Prototype Pollution Vulnerable Code

● Below you can see that the
property got polluted in
the Object prototype.

● So what does that mean for
other variables such as
otherObject?

Example Prototype Pollution Vulnerable Code

● All Objects have the same
Object Prototype

● Last line of code prints
“proto polluted” to
confirm.

Why are Prototype Pollution Vulns Bad?

● You can set attributes for other variables.

● This could include:
○ Account roles
○ Application settings
○ Enabling dangerous features

● So let’s make things worst and get RCE on a NodeJS web
application

Getting RCE via Prototype Pollution

● Code on the right is a
very simple ExpressJS web
application.

● Uses the vulnerable merge
function from earlier.

● Also uses the ejs template
engine.
○ Will become important later.

Getting RCE via Prototype Pollution

● Let’s look at the entry
point of the prototype
pollution.

Getting RCE via Prototype Pollution

● Let’s look at the entry
point of the prototype
pollution.

● The cookies are read using
the cookie-parser package.

Getting RCE via Prototype Pollution

● Let’s look at the entry
point of the prototype
pollution.

● The cookies are read using
the cookie-parser package.

● Then the cookies are
merged with the
accountDetails.

Getting RCE via Prototype Pollution

● Let’s look at the entry
point of the prototype
pollution.

● The cookies are read using
the cookie-parser package.

● Then the cookies are
merged with the
accountDetails.

How on earth are we going to
inject our {“__proto__”:{}}
payload into a cookie????

Don’t Assume Dependencies Are Your Friend

● A lot of NodeJS libraries allow very dynamic user inputs…

● cookie-parser is a good example of one.
○ Normally cookie values are only strings
○ HOWEVER, cookie-parser allows decoding JSON cookies using JSON.parse

where the value is prefixed with j:…

○ E.g. A cookie with the value name=j:{“hi”: “world”} would be decoded
as a JS Object.

Getting RCE via Prototype Pollution

● So a cookie set as below would exploit the prototype
pollution vulnerability.
○ metadata=j:{“__proto__”:{“polluted”:”value”}}

Getting RCE via Prototype Pollution

● So a cookie set as below would exploit the prototype
pollution vulnerability.
○ metadata=j:{“__proto__”:{“polluted”:”value”}}

● How to get RCE???

Getting RCE via Prototype Pollution

● Remember that the web
application used the ejs
template engine.

Getting RCE via Prototype Pollution

● Remember that the web
application used the ejs
template engine.

● Some mad lad named Mizu
figured out a way that a
prototype pollution
vulnerability could
execute terminal commands
when using ejs!

https://mizu.re/post/ejs-server-side-pr
ototype-pollution-gadgets-to-rce

https://mizu.re/post/ejs-server-side-prototype-pollution-gadgets-to-rce
https://mizu.re/post/ejs-server-side-prototype-pollution-gadgets-to-rce

Getting RCE via EJS Prototype Pollution

● The compile function
within ejs allows the
user to set options.

● If the client option is
set, then it will insert
the code from the
escapeFunction

https://mizu.re/post/ejs-server-side-prototype-pollution-gadgets-to-rce

https://mizu.re/post/ejs-server-side-prototype-pollution-gadgets-to-rce

Getting RCE via EJS Prototype Pollution

● The compile function
within ejs allows the
user to set options.

● If the client option is
set, then it will insert
the code from the
escapeFunction

https://mizu.re/post/ejs-server-side-prototype-pollution-gadgets-to-rce

We can pollute:
● client: put anything
● escapeFunction: our

RCE payload

Final payload:
metadata=j:{"__proto__": {"client":
true,"escapeFunction":
"JSON.stringify%3B
process.mainModule.require('child_p
rocess').exec('touch /tmp/rce')"}}

https://mizu.re/post/ejs-server-side-prototype-pollution-gadgets-to-rce

Getting RCE via Prototype Pollution

Method to exploit:

1. Exploit the prototype
pollution vuln with out
payload.

a. metadata=j:{"__proto__": {"client": true,"escapeFunction": "JSON.stringify%3B
process.mainModule.require('child_process').exec('touch /tmp/rce')"}}

2. Trigger executing ejs
compile by rendering a
template.

https://mizu.re/post/ejs-server-side-prototype-pollution-gadgets-to-rce

https://mizu.re/post/ejs-server-side-prototype-pollution-gadgets-to-rce

Some Example of RCE Prototype Gadgets

● https://mizu.re/post/ejs-server-side-prototype-pollution-
gadgets-to-rce

● https://blog.arkark.dev/2023/09/21/seccon-quals/#sandbox-
node-ppjail

● I ran out of time adding more…

https://mizu.re/post/ejs-server-side-prototype-pollution-gadgets-to-rce
https://mizu.re/post/ejs-server-side-prototype-pollution-gadgets-to-rce
https://blog.arkark.dev/2023/09/21/seccon-quals/#sandbox-node-ppjail
https://blog.arkark.dev/2023/09/21/seccon-quals/#sandbox-node-ppjail

Prototype Poisoning Vulnerabilities

● Another prototype chain bug is prototype poisoning.

● Prototype poisoning is when you change the prototype of
an input using user controlled values.
○ Sometimes validation checks don’t validate the properties of

prototypes.
○ Used for bypassing validation checks in NodeJS applications

● Not as severe as prototype pollution, but you can find
very interesting vulns by abusing a prototype poisoning
bug.

Example: Bypassing HTML Sanitisation
● Very simple web app that

displays stuff on a page.

● Uses middleware to extract
URL parameters that start
with page_ and sanitise the
input using DOMPurify to
mitigate against XSS.

● Let’s see what happens if we
try a basic XSS payload.

Example: Bypassing HTML Sanitisation

● /?page_username=yeet&page_message=

● If vulnerable to XSS, we should get an alert box.
● However, DOMPurify strips the onerror attribute from out

 input.
● We need to find a way to bypass the DOMPurify sanitisation

Example: Bypassing HTML Sanitisation
1. Loops through the URL query

parameters.

Example: Bypassing HTML Sanitisation
1. Loops through the URL query

parameters.

2. If the key name starts with
page_ then…

Example: Bypassing HTML Sanitisation
1. Loops through the URL query

parameters.

2. If the key name starts with
page_ then…

3. Remove the page_ prefix from
the key and set it on
req.pageParams for later
sanitisation.

Example: Bypassing HTML Sanitisation
1. Loops through the URL query

parameters.

2. If the key name starts with
page_ then…

3. Remove the page_ prefix from
the key and set it on
req.pageParams for later
sanitisation.

What if I set a query name as
page___proto__?

Example: Bypassing HTML Sanitisation
● We try to set __proto__ of

req.pageParams to a
string???

● However, we need to
manipulate our input an
Object not a string.

qs makes everything an Object

● qs is a widely popular URL
query string parser

● Used in nearly all NodeJS web
frameworks…

● Allows users to manipulate
their inputs into different
types.

Some examples of different types.

● String: /?example=hi

● Object: /?example[hi]=there

● Array: /?example[]=first&example[]=second

qs makes everything an Object

● qs is a widely popular URL
query string parser

● Used in nearly all NodeJS web
frameworks…

● Allows users to manipulate
their inputs into different
types.

Some examples of different types.

● String: /?example=hi

● Object: /?example[hi]=there

● Array: /?example[]=first&example[]=second

Example: Bypassing HTML Sanitisation
● /?page_username=yoot&page__

_proto__[message]=i%20am%20
in%20the%20proto%20now

● We have been able to inject
in a new prototype for the
req.pageParams.
○ This is the prototype poisoning

bug.

● So how can this bypass the
DOMPurify sanitisation?

Example: Bypassing HTML Sanitisation
● Object.key iterator does

not iterate through
prototype keys.

● Therefore our poisoned
message property would
never be sanitised!

Example: Bypassing HTML Sanitisation
● Most Object key iterators

do not iterate through
prototype keys.

● Therefore our poisoned
message property would
never be sanitised!

Some methods that don’t iter prototype props

User Input Manipulation

Don’t Trust Anything
● Thanks to qs doing this,

devs should be always
validating types during
runtime.
○ Also JSON is a thing that

can also be manipulated.

● It sometimes can cause
really bad vulns
○ E.g. a lot of NodeJS

libraries that query data
could be abused to dump
sensitive data out

Now some of you might be thinking this…

But GhostCcamm, what about TypeScript?

Wasn’t TypeScript supposed to fix the
issue of validating types in JavaScript?

Now some of you might be thinking this…

But GhostCcamm, what about TypeScript?

Wasn’t TypeScript supposed to fix the
issue of validating types in JavaScript?

Well sort of, but
not quite…

About TypeScript

● TypeScript is a strongly typed language that can be run
using NodeJS.
○ Validates types during compilation to JavaScript files

● However, types are only validated when compiled.
○ It does not validate the types during runtime.
○ You will still need to add your own validation checks.

● “TypeScript is not designed to provide input constraints
that are at an advanced level of type safety.”
○ https://blog.logrocket.com/methods-for-typescript-runtime-type-checki

ng/

https://blog.logrocket.com/methods-for-typescript-runtime-type-checking/
https://blog.logrocket.com/methods-for-typescript-runtime-type-checking/

Now some of you might be thinking this…

Let’s go through a
TypeScript example
this time about

Object
manipulation.

Example: NodeJS Object Relational Mappers

● Nearly all NodeJS Object
Relational Mappers (ORMs)
support some form of
Object input syntax.

● Code on the right is an
example for querying data
using the prisma ORM.

Example: NodeJS Object Relational Mappers

● However, the code on the
right is vulnerable to an
ORM Leak vulnerability.
○ The developer assumed the

values of req.query would
only be strings.

○ Notice how it also written in
TypeScript.

● Let’s explain why the
example code is
vulnerable.

Example: NodeJS Object Relational Mappers

● How the data is linked in
the example app.

Example: NodeJS Object Relational Mappers

● How the data is linked in
the example app.

Hmmm… can we dump out
the User passwords?

Example: NodeJS Object Relational Mappers

● Object input for querying by
the author’s password using
the following conditions:
○ The password starts with the

letter a.
○ The author has admin in their

email.

Example: NodeJS Object Relational Mappers

● Object input for querying by
the author’s password using the
following conditions:
○ The password starts with the letter

a.
○ The author has admin in their email.

● That input as qs URL params.

/posts?author[password][startsWith]
=a&author[email][contains]=admin

Example: NodeJS Object Relational Mappers
Searching if the password starts with a returns a list

Searching if the password starts with b returns nothing

Example: NodeJS Object Relational Mappers
Searching if the password starts with a returns a list

Searching if the password starts with b returns nothing

We can infer by these different lengths that the password
starts with the character a!

We can leak the full password character by character!

Example: NodeJS Object Relational Mappers
Proof of concept dumping the password in that example app

Other DB Querying Libraries

● This issue of allowing user input into your query methods
without validating the input type is not only limited to
prisma.

● Other examples off the top of my head:
○ Sequelize
○ Mongoose

■ These types of vulnerabilities are called NoSQLi
○ Others that I have forgotten

Conclusion

● There are lot of ways you can
cause funky things in NodeJS web
applications.

● Hopefully this raises awareness
why you should always validate
the types of user inputs.
○ You should never assume the type of

an input in NodeJS applications.

Conclusion

● There are lot of ways you can
cause funky things in NodeJS web
applications.

● Hopefully this raises awareness
why you should always validate
the types of user inputs.
○ You should never assume the type of

an input in NodeJS applications.

● Questions?

Have fun hacking some
NodeJS web apps :)

CTF TIME!

● CTF website: https://objectctf.ghostccamm.com

● There are 4 challenges:
○ 2xEasy: Heavily based on the contents of this workshop
○ 1xMedium: A more realistic NodeJS web application
○ 1xHard: The medium challenge made cooked

● These slides to help you do the CTF
○ https://ghostccamm.com/slides/nodejs-objects

https://objectctf.ghostccamm.com
https://ghostccamm.com/slides/nodejs-objects

