
PERTH SOCIALWAREPERTH SOCIALWARE
0x060x06

Writeups Down UnderWriteups Down Under

$ ~/: groups "socialware"$ ~/: groups "socialware"

Welcome!Welcome!
About SocialwareAbout Socialware

Enjoy!Enjoy!

$ ~/: groups "socialware"$ ~/: groups "socialware"

Huge thanks to Telstra forHuge thanks to Telstra for
the venue!the venue!

$ ~/: cat ./housekeeping$ ~/: cat ./housekeeping

Please respect the venue and spacePlease respect the venue and space
Bathrooms require a keycardBathrooms require a keycard
Pizza should be herePizza should be here
WiFi is @CIC, no passwordWiFi is @CIC, no password
Network is NOT in scopeNetwork is NOT in scope

$ ~/: groups "socialware"$ ~/: groups "socialware"

Acknowledgement of Country

Emu Exploit
We are a competitive hacking team current rank #1 in
Australia on CTFtime.org
Founded in 2021, the team consists of many
highschoolers as well as industry professionals
Won many events including Pecan CTF,
DownUnderCTF, WACTF

Today’s Presenters
Rainier (teddy / TheSavageTeddy) - Vice Captain
Torry (torry2)
Ronan (roxiun)

$ ~/: whoami$ ~/: whoami

Emu Exploit at Pecan CTF 2023

$ ~/: whoami$ ~/: whoami

p4CTF in Katowice, Poland

BSides Perth 2023

Pecan CTF 2023

Agenda

About DownUnderCTF
‘emuc2’ (forensics) live demo walkthrough by Torry
‘i am confusion’ (web) walkthrough by Ronan
‘vector overflow’ (pwn) walkthrough by Rainier

Feel free to raise your hand and ask question at anytime during the
walkthrough.

Challenges can be attempted after the talk - if you need help, let us
know!

DownUnderCTF
Largest CTF (Capture the Flag) competition in the Southern Hemisphere

Prizes for Australia and New Zealand students
This year, over $17000 in prizes!

Over 60 challenges of various categories
hardware
pwn (binary exploitation)
crypto(graphy)
misc
reverse engineering
web exploitation
forensics
osint

DownUnderCTF

Our teams managed to win some prizes!
‘Blitzed Emus’ secured #1 AUS/NZ student team overall
‘teddy roxiun duo run’ secured #1 AUS/NZ student team, and top highschool

AUS/NZ student scoreboard Secondary (highschool) scoreboard

Before the event from an Organisers point of view:
How do we design challenges which suite most audiences.
Hosting a CTF which does not crash at the beginning (Infra).
QAing challenges to ensure it is the best it could be (QA).

DownUnderCTF
By: @Pix and @TurboPenguin

During the CTF as an organiser:
How we provide the best CTF support (for beginner and easy
challenges only).
Building challenges during the CTF (For the people).
How to join us for the next event (Competitor / Author).
Want to know more ... Go to https://downunderctf.com

DownUnderCTF

4AM
Forensics Drop

S O R R Y N O T S O R R Y

emuc2
163 points, forensics

Author: BootlegSorcery@

Live Demo

i am confusion
166 points, web

Author: richighimi

challenge overview

we are given the web server’s
source as well as the project’s
package.json (file used to control
scripts & dependencies of the
project

The first thing I tend to do, especially when approaching lower
difficulty CTF challenges, is to quickly check for any outdated
packages.

To get a better idea of what we may be looking for lets dive
into the source code

challenge methodology

Double checking the
versions listed in

package.json, we can see
that the package

“jsonwebtoken” is
severely outdated, and
has a multitude of CVEs

associated with it.

this webserver uses JWT (JSON Web Tokens) to verify the
user’s identity.

some background

JWTs are a common way of
transmitting information
that allows the integrity of
the token to be verified by
the server.

It consists of three Base64
encoded strings separated
by a period.
The format is the encoded
header.payload.secret

The authenticity of the JWT can be verified and trusted by the
webserver as the token is typically signed using a secret (using the
HMAC algorithim) or through a private/public key scheme such
as RSA or ECDSA

In the case of our target web server, we can see the token is
signed used RS256 (ie. RSA signature with SHA256).

some background

when looking at the source of the server, we notice something
funny.

the JWT that the server creates is signed using RS256, however
when verifying the user’s JWT, the server allows both RS256 and
HS256.

it allows both a symmetric and asymmetric means of verifying
our JWT!

challenge methodology

with a little bit of googling, you can find that this opens our
app up to a vulnerability known as “algorithm confusion” (as
hinted in the challenge name)

in our source we can see that our server verifies our “auth”
cookie by passing in the public key, and allowing verification
with both RS256 and HS256.

challenge methodology

In most libraries, the second argument is used in symmetric
algorithms as a secret, and in asymmetric algorithms as a
public key.

challenge vulnerability

In our case the code allows either HS256 or
RS256 to verify the algorithm.

Furthermore, (using a bit of google once
again) our outdated library does not
implement any checks to prevent confusion

what does this mean?

if we create a malicious JWT which is signed using HS256,
rather than the expected RS256, the application will treat the
public key as the HS256's secret and then be verified by the
same public key

so lets do that!
 Create a malicious JWT1.
 Sign using HS256 using the public key2.
 send to server3.
 profit? 4.

To create our malicious JWT, I used ticarpi/jwt_tool to
tamper with the JWT, you can also go to jwt.io and mess with
it over there

exploitation

here’s where I hit a slight hiccup - I couldn’t find the server’s
public key. I checked the JWKS’ keys.json route but to no avail

exploitation - a hiccup

After the competition I read the writeup and it seems that it
was possible to obtain the key via OpenSSL but I would like to
provide an alternative solution that I used and that is useful
for cases where you are unable to obtain the public key

exploitation - a hiccup

openssl s_client -connect
172.25.80.1:443 2>&1 < /dev/

null | sed -n '/-----
BEGIN/,/-----END/p' >
certificatechain.pem

Convert the certificate to
x509 openssl x509 -pubkey

-in certificatechain.pem -
noout > pubkey.pem

Use node cli to sign JWT
with the algorithm as HS256

and sign with the x509
public key

After a good bit of googling, I discovered that it was in fact
possible to extract the public key from two JWTs

exploitation - overcoming the
hiccup

Following the instructions, I
generated two different JWTs by
logging into the instance twice
and copying out the cookies.

exploitation - overcoming the
hiccup
This generates two different possible JWT cookies.

Now we just test both the cookies to find which is valid. In my case
the second was valid.

exploitation
Now I create my malicious JWT using jwt_tool

exploitation
Now I create my malicious JWT using jwt_tool

Make sure to edit
user to admin and

ensure cookie is
not expired!

exploitation
Now I create my malicious JWT using jwt_tool

Make sure to edit
user to admin and

ensure cookie is
not expired!

exploitation
Now I create my malicious JWT using jwt_tool

Make sure to edit
user to admin and

ensure cookie is
not expired!

exploitation
Now I create my malicious JWT using jwt_tool

Now I sign
the cookie
using my

public key

profit
Now use the cookie on the website and gain admin access

any questions?

ask questions audience engagement good

vector overflow
100 points, pwn (binary exploitation)

Author: joseph

vector overflow - challenge overview

We are given a ELF binary and c++ source code.

vector overflow - challenge overview

We are given a ELF binary and c++ source code.

It seems to read input from the terminal into buf, then
loop through the vector v, comparing it to “DUCTF”.

(A vector in c++ is simply an array of dynamic size.)

If each character in v matches “DUCTF”, win() is
called which gives us the flag.

Otherwise, lose() is called and we don’t get the flag :(

vector overflow - challenge overview

But how can v be {’D’, ‘U’, ‘C’, ‘T’, ‘F’} ?
It is set to {'X', 'X', 'X', 'X', 'X'} initially, and our
input is written to buf, not v.

vector overflow - challenge overview

But how can v be {’D’, ‘U’, ‘C’, ‘T’, ‘F’} ?
It is set to {'X', 'X', 'X', 'X', 'X'} initially, and our
input is written to buf, not v.

or is it....

vector overflow - vulnerability

The challenge name vector overflow strongly
hints at a buffer overflow vulnerability.

But what is a buffer overflow?

vector overflow - vulnerability

A buffer overflow occurs when too much data is read/copied into a variable

In memory, the variables buf and v are next to each other.

A buffer overflow occurs when too much data is read/copied into a variable

In memory, the variables buf and v are next to each other.

vector overflow - vulnerability

buf can hold 16 characters

buf

A buffer overflow occurs when too much data is read/copied into a variable

In memory, the variables buf and v are next to each other.

vector overflow - vulnerability

buf can hold 16 characters
if we input “Emu_Exploit”, buf would look like this:

buf

E m u E x p tiol_

A buffer overflow occurs when too much data is read/copied into a variable

In memory, the variables buf and v are next to each other.

vector overflow - vulnerability

buf can hold 16 characters
if we input “Emu_Exploit”, buf would look like this:

buf

E m u E x p tiol_

But what if we enter too many characters?

vector overflow - vulnerability

buf

E m u E x p tiol

What is after buf in memory? It’s v !

v

_

...

vector overflow - vulnerability

buf

a

What is after buf in memory? It’s v !

v

So if we enter too many characters, our input will
overflow the buffer buf into v

...

a a a a a a a a a a a a a a a a a a a a

a a a a a a a a a a

vector overflow - vulnerability

Can we even input that many characters?
Turns out, yes!

no input size check is done

vector overflow - vulnerability
Sure enough, checking in a debugger such as gdb let’s us see that v can
be overwritten

After entering ‘aaa’

Before inputting anything

Before inputting anything

But what is this vector data?

vector overflow - vulnerability
Sure enough, checking in a debugger such as gdb let’s us see that v can
be overwritten

these don’t look like ‘XXXXX’
they look like pointers!

vector overflow - exploitation

‘XXXXX’

So it seems like v actually
contains 3 pointers, one
pointing to start of array, and
two pointing to end of array

vector overflow - exploitation

Brief note:
If we look closer at v, there
seems to be 0x21, 8 bytes
before the data.

vector overflow - exploitation
So where can we find a pointer (an address) to
the string ‘DUCTF’ ?

My first thought was to use the ductf variable
as it contained ‘DUCTF’. However, this is a local
variable, and we didn’t have an ASLR leak.
Therefore the address of ductf wasn’t constant.

vector overflow - exploitation
So where can we find a pointer (an address) to
the string ‘DUCTF’ ?

My first thought was to use the ductf variable
as it contained ‘DUCTF’. However, this is a local
variable, and we didn’t have an ASLR leak.
Therefore the address of ductf wasn’t constant.

However, if we use command pwn checksec to
look at security features in the binary, we can
see that PIE (position independent executable) is
turned off.
This means addresses of global variables are
constant.

vector overflow - exploitation
We have 2 global variables, which we know the
addresses of:

One of which is buf, which we can control!

vector overflow - exploitation
We have 2 global variables, which we know the
addresses of:

One of which is buf, which we can control!
So if we make buf look like a vector with the ‘DUCTF’ data, and put pointers to
it in v, we can make it seem like v contains ‘DUCTF’ !

buf (0x4051e0)

v (0x4051f0)

0x21 0x0 0x00x0 0x0 0x0 0x0 0x0 D U C T F
buf+8 (0x4051e8)

0x0 0x0 0x00x0 0x00x40 0x51 0xe8

0x0 0x0 0x0

0x0 0x0 0x00x0 0x00x40 0x51 0xed 0x0 0x0 0x00x0 0x00x40 0x51 0xed

vector overflow - exploitation
With that, we can make a python script to send the data
and get the flag!

DUCTF{y0u_pwn3d_th4t_vect0r!!}

any questions?

vector overflow

~/: shutdown~/: shutdown
Thank you!

Networking will now commence!

To try these challenges for yourself, go here:
https://github.com/DownUnderCTF/Challenges_2024_Public

Check out DownUnderCTF:
https://downunderctf.com/

